US009348600B2

a2 United States Patent 10) Patent No.: US 9,348,600 B2
Webber (45) Date of Patent: May 24, 2016
(54) PRIORITISING OF INSTRUCTION 2004/0003203 Al* 1/2004 Ukaiccoooevvviiininnnn. 712/205
FETCHING IN MICROPROCESSOR 2005/0235126 Al 10/2005 Ko etal.
SYSTEMS 2006/0101238 Al 5/2006 Bose et al.
2006/0179276 Al* 82006 Banerjeeetal. 712/205
2007/0168649 Al 7/2007 And: t al.
(75) Inventor: Andrew Webber, Hertfordshire (GB) eronea
FOREIGN PATENT DOCUMENTS
(73) Assignee: Imagination Technologies Limited,
Kings Langley (GB) EP 0583089 A3 2/1994
EP 0891 588 Bl 1/1999
(*) Notice: Subject to any disclaimer, the term of this gf]; é ;gg gig ﬁl 51;; %88;
%atselg IISSZ’(‘SIE;eg 00; dz(;fsmed under 35 WG W0 2005101203 Al 10/2005
OTHER PUBLICATIONS
(21) Appl. No.: 12/322,942
International Search Report dated May 4, 2009 (3 pages).
(22) Filed: Feb. 9,2009 Written Opinion of the International Searching Authority (4 pages).
(65) Prior Publication Data * cited by examiner
US 2009/0210660 Al Aug. 20, 2009 Primary Examiner — William B Partridge
(30) Foreign Application Priority Data (74) Azwrneyf Agent, or Firm — Vorys, Sater, Seymour and
Pease LLP; Vincent M DeLuca
Feb.7,2008 (GB) «cooieiiciiiiiccee 0802314.5
(57) ABSTRACT
(51) Int. CL A method and a system are provided for prioritizing the
GOGF 9/30 (2006.01) fetching of instructions for each of a plurality of executing
GOGF 9/38 (2006.01) instruction threads in a multi-threaded processor. Instructions
(52) US.CL come from at least one source of instructions. Each thread has
C.PC o GO6F 9/3851 (2013.01) a number of threads buffered for execution in an instruction
(58) Field of Classification Search buffer. A first metric for each thread is determined based on
None) the number of instructions currently buffered. A second met-
See application file for complete search history. ric is then determined for each thread, this being an execution
. based metric. A priority order for the threads is determined
(56) References Cited from the first and second metrics, and an instruction is fetched
U.S. PATENT DOCUMENTS fro.m.the source for the .thread .With th.e highest determined
priority which is requesting an instruction.
6,938,147 Bl 8/2005 Joy et al.
7,657,883 B2* 2/2010 Jensen 717/161 19 Claims, 3 Drawing Sheets
26 28
Thread 0 % -
" Instruction Decode
Instruction |, and resource j+—»
OE:’C:D e iribq;ity Ly fetch interlocks
rbiter [*
e a Thread 1 /26 26\
2 24 1 Instruction Instruction Decode .
o4 etch | [~*| @ndresource fe—» Instruction
~—20) interlocks Scheduler
Instructi Priority | | 0=
nswruction Tiorty -
cache [| Abiter Thread n /26 23\
Instructio Instruction Decode
fetchl "l—| andresource
interlocks

Instruction Fetch sub-system

U.S. Patent

May 24, 2016 Sheet 1 of 3 US 9,348,600 B2
2 Simple |_
> Thread Instruction Fetch Address
Based Arb
Allocator
——>] [Allocato!
——> TTATIoCato (
o A 4 10
Schedular 10
Arb
Data
Requests Alu Alu Alu Alu
(((("
12 | 12 12 12 Core
impie Code
Core
Data > Address Memory
Memory Based
Allocator
1(6 14 6
DCache ICache
MMU
External Memories

FIG. 1

Interconnections

U.S. Patent

May 24, 2016 Sheet 2 of 3 US 9,348,600 B2

26 28

Thread 0 / -

» Instruction Instruction Decode
) R feteh » and resource >
Olg::\;llp > I;ng;lty s € interlocks
rbiter
.

26 28

” 8 Thread 1 / <

24 ™ Instruction Instruction Decode)
o4 ‘eich »| and resource »| Instruction
~—20 2 > interlocks Scheduler
X 30—
Instruction Priority d

> . - 26 28

cache Arbiter : Thread n / "

. »| Instruction Instruction Decode
fetch »| and resource
interlocks

FIG. 2

Instruction Fetch sub-system

U.S. Patent May 24, 2016 Sheet 3 of 3 US 9,348,600 B2

To Instruction From Instruction
Cache Cache
A
\ 4 "\-*38
. . Instruction
Instruction. Instruction > Buffer
Address Feed Buffer ", ,
Fullness
ASingle 32 (
Thread's - 34
Instruction Instruction
fetch Data Feed
. ~—36
Engine
v
To multi-threaded
instruction scheduler

FIG. 3

A Single Thread'’s Instruction Fetch

- . Priority
Priority Arbiter “ Order
24
request grant request grant
request grant
A A
Instruction Instruction Instruction
Fetch Engine Fetch Engine | * * » « | Fetch Engine
(thread 0) (thread 1) (thread n)

FIG. 4

Priority

US 9,348,600 B2

1
PRIORITISING OF INSTRUCTION
FETCHING IN MICROPROCESSOR
SYSTEMS

FIELD OF INVENTION

This invention relates to the prioritising of instruction
fetching in microprocessor systems and in particular to the
implementation of this in multithreaded microprocessor sys-
tems.

BACKGROUND OF THE INVENTION

In our European Patent Application No. EP0891588 there
is described a multithreaded microprocessor and data pro-
cessing management system in which a plurality of executing
threads are routed between a plurality of data inputs and a
plurality of data outputs via a data processing means. The data
processing means has access to a data storage means and the
system repeatedly determines which routing operations and
which data processing operations are capable of being per-
formed, and commences execution of at least one of the
routing and data processing operations on each clock cycle.

In such a system, a memory management unit is used to
fetch data either from an internal memory cache or from an
external memory. Typically external memory has only a
single data path and therefore a memory prearbiter is used to
arbitrate between requests from different threads for data
from memory.

Our European Patent Application No. EP1738259 pro-
poses a scheme for improved memory arbitration using vari-
ous metrics attached to the various threads which are execut-
ing.

Improvements to the type of multithreaded processor
described above have introduced the concept of what we refer
to as “superthreading”. This involves issuing instructions for
more than one executing thread on a given dock cycle. At
maximum, instructions for all the executing threads can be
issued on a single clock cycle which, in a four thread imple-
mentation, would involve issuing four instructions per dock
cycle. Such an implementation is, however, only fully utilised
when all of the possible threads have instructions available
and ready to run.

In some implementations of multithreaded processors,
threads are provided with an instruction buffer which may, for
example, hold up to eight instructions for a thread. The
instruction buffer is filled by using a instruction fetch routine
which is able to fetch instructions in advance of the current
instruction to be used and preferably is also able to determine
actions such as branch or hardware loop prediction which
may result from instructions.

When multiple threads are being utilised, there are typi-
cally only one or two sources from which instruction data
may be fetched. These are the instruction cache and embed-
ded instruction random access memory (RAM). Therefore, in
a device with four executing threads, there are more threads
than sources of instruction data and therefore arbitration
between the threads needs to be implemented for access to
instruction data to be optimised.

SUMMARY OF THE INVENTION

Preferred embodiments of the present invention address
the problem of efficient arbitration between instruction fetch-
ing for different executing threads whilst also attempting to
ensure that as many threads as possible have at least one
instruction in their buffers for subsequent execution.

10

15

20

25

30

35

40

45

50

55

60

65

2

In accordance with one aspect of this invention there is
provided a method for prioritising the fetching of instructions
for each of a plurality of executing instruction threads in a
multithreaded processor system from at least one source of
instructions comprising the steps of: determining a first met-
ric for each thread based on the number of instructions cur-
rently buffered for execution on that thread; determining an
execution based second metric for each thread; determining a
priority order for the threads from the first and second metric;
and fetching an instruction from the source for the thread with
the highest determined priority that is requesting an instruc-
tions.

This and other aspects of the invention are defined in the
appended claims to which reference should now be made.

BRIEF DESCRIPTION OF THE DRAWINGS

There now follows a detailed description of a preferred
embodiment of the invention which is provided by way of
example the reference to the accompanying drawings in
which:

FIG. 1 shows a multithreaded processor embodying the
invention;

FIG. 2 shows an instruction fetch subsystem for use in the
system of FIG. 1;

FIG. 3 shows an instruction fetch unit for use in the instruc-
tion fetch subsystem of FIG. 2; and,

FIG. 4 shows a priority arbiter for use with the instruction
fetch subsystem of FIG. 2.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

The system shown in FIG. 1 comprises a multithreaded
processor core. This is capable of running a number of threads
each of which provide instructions via an instruction fetch
unit 2. Instructions to be executed by each of the plurality of
executing threads are fetched by thread instruction fetch units
2, one for each thread. Systems may have any number of
threads but typically two or four are used at present. In gen-
eral, these are arranged to operate in parallel subject to their
ability to issue instructions via a thread instruction scheduler
4, but could be used in a system where only one thread can
execute on each clock cycle. There are two sources of instruc-
tions in this example, an instruction cache 6 which retrieves
instructions from external memories, and a core code
memory 8 which stores operating system instructions and
other instructions of this nature. An arbitrator is positioned
between the instruction cache and the thread instruction fetch
unit 2 and a further arbitrator between the core code memory
8 and the thread instruction fetch units 2. This is used to
determine which thread should be next to retrieve an instruc-
tion from each source of instructions.

The thread instruction scheduler 4 issues instructions to, in
this example, each of four executing pipelines which here are
represented by arithmetic/logical units (ALU) 12. These
execute the plurality of executing threads.

Requests for data memory on executing threads start off as
instructions which are issued and then passed through the
instruction scheduler 4 to a decision point where the request
is routed to a data cache 14 orto RAM core code data memory
16. Memory management unit (MMU) 18 handles requests
from the data cache 14 and the instruction cache 6 to retrieve
data from an external memory.

Variations on this arrangement are that the RAM could be
shared between code and data. However, this would compli-
cate the implementation and is not currently used. There is, of

US 9,348,600 B2

3

course, a great deal of interconnection between execution
units which is not illustrated here in the interests of clarity,
since it is not required to understand the wording of the
invention.

A complete implementation may also incorporate small
quantities of on chip RAM that can be accessed instead of the
cache sub-system 3. Some systems may incorporate instruc-
tion RAM and also data RAM.

Multithreaded processors have been described in a number
of other documents and will be well known to those skilled in
the art. The embodiment of the invention described herein
focuses on the prioritisation of instruction fetch to feed an
instruction scheduler 4 which is preferably capable of issuing
instructions on more than one thread on any given clock
cycle. A block diagram of a suitable system embodying the
invention is shown in FIG. 2. This shows all the main ele-
ments in an instruction fetch sub-system.

In this embodiment, there are two sources of instruction
data, although there could be only one, or more than two.
These are the instruction cache 20 and on chip RAM 22, the
latter of which is loaded with embedded instructions for the
microprocessor which may be required to run on various ones
of the executing instruction threads. When a thread requires
an instruction, it must be fetched from either the instruction
cache 20 or from the on chip RAM 22. A thread requesting an
instruction sends its request to one of the available sources of
instructions, i.e. the one containing the instruction being
requested. Each thread can only issue one instruction fetch
per clock cycle.

As, there are two sources of instructions, each may be
accessed at the same time as the other by different threads. In
order to determine which thread is to access instructions from
either the instruction cache 20 or the on chip RAM 22, each
source of instructions has a priority arbiter 24 coupled
between it and the instruction fetch units for each of the
threads.

Each priority arbiter is coupled to an instruction fetch unit
26 for each of the threads (thread O to thread n). Via this
connection, the priority arbiter can receive requests for
instructions with associated prioritisation data and can pro-
vide fetched instructions to an Instruction fetch unit 26.

Each instruction fetch unit 26 includes an instruction buffer
which can hold up to eight instructions in readiness to feed to
an instruction decoder and resource interlocking unit 28
before issuing the instruction to an instruction scheduler 30
which will pass each instruction in turn to a processor for
execution.

The priority arbiters 24 operate by receiving from each
thread’s instruction thread fetch unit 26 a measure of how
much instruction data that instruction fetch unit 26 has left in
its instruction buffer or in the process of being loaded into its
instruction buffer, i.e. data relating to the number of instruc-
tions currently buffered. Therefore, if the instruction buffer
can contain eight instructions, and it currently contains five
instructions, data indicating that the thread currently has five
instructions buftered (or space for three further instructions in
its buffer) will be sent to the priority arbiter. The priority
arbiter will then be able to compare this data with data
received from other threads to determine which a priority
order for the threads. It will then give priority to the thread
with the highest priority that is also requesting an instruction.

The priority arbiter 24 can combine this first measure of
prioritisation for issuance of instructions with a further mea-
sure. This second measure is a more sophisticated measure-
ment of the overall priority given to a thread. This is typically
a combination of a number of different properties of a thread.
These can include a deadline count, which is a time by which

10

15

20

25

30

35

40

45

50

55

60

65

4

a thread must be executed; a delay count, which is the delay
since execution of the thread was first requested; a number of
instructions yet to execute, and priority, this being the nomi-
nal priority given to the thread. The deadline count is the most
important of these as it determines when a thread’s execution
must be complete. Other factors relating to thread priority
may be used in measures of this type.

In the preferred embodiment of the Invention, therefore,
each priority arbiter 24 will combine the priority measures
relating to the need for an Instruction, i.e. the measure based
on the fullness of the thread’s instruction buffer, and the
overall thread priority, which can be based on a number of
different factors. Using these, it is possible for each priority
arbiter to determine an ordered list of thread priorities when
requesting instructions from either the instruction cache or
the on chip RAM on each cycle such that on any given cycle
the thread with the highest thus determined priority is the one
that is given access to the instruction cache or the on chip
RAM as appropriate. A thread will only access one of these
sources of instructions at a time. It is not possible for a thread
to fetch instructions from both at the same time.

In this example, two priority arbiters are shown one for the
instruction cache and one for the on chip RAM. Each will
have the same metrics presented to it. Each will produce the
same prioritised list for each clock cycle. However, they will
have mutually exclusive sets of threads requesting instruc-
tions from the sources with which they are associated.
Embodiments of the invention may be implemented with any
number of sources of Instructions including a single source.

More specifically, embodiments of this invention run on a
multithreaded processor with two or more threads (typically
four). A multithreaded processor is a microprocessor with
execution units, caches and memories which additionally
incorporates the concept of multiple threads of executing
instructions. A thread consists of a stream of instructions
acting to utilise the resources of the microprocessor, some of
which may be private to that specific thread and some of
which may be shared between threads. Resources include
registers, bandwidth, and space in the cache and associated
memories.

Each thread in a multithreaded processor has its own pro-
gram counter, which in turn is used to control instruction fetch
for that thread. Therefore, every thread has a piece of hard-
ware to fetch instructions from instruction memory or
Instruction cache for execution on that thread. It would be
possible for each thread to have its own instruction memory or
instruction cache but cost and size are minimised by sharing
the instruction memories and instruction cache between all
the threads and arbitrating between them for the right to
access the memory or cache.

Simple arbitration methods such as round robin can work
satisfactory up to a point. Difficulties are encountered, where
different threads have different workloads and the balance
between the priorities of the threads needs to be implemented
such that threads with the greatest demand get priority over
other threads when accessing instructions.

One form of more sophisticated arbitration is discussed in
our European Patent Application No. EP1738259 mentioned
above in which hardware monitors the load of the threads over
time and matches this against their stated resource require-
ments. In that European Patent, this is used to determine
access to resources such as memory.

We have appreciated that it is possible for more than one
thread to issue an Instruction on any given cycle. For this to
happen, a number of criteria must be met, most notably that
all the threads must have an instruction available to issue, and
secondly those instructions must be compatible with each

US 9,348,600 B2

5

other such that no two threads are trying to use the same
resource at the same time. In this context, resource covers e.g.
execution units, data cache access, coprocessor access etc.
Therefore, in a system of n threads any number between 0 and
n threads may issue instruction during a single cycle.

The process for determining which threads need which
resources is complex, particularly in super threading proces-
sors where more than one thread may be executing instruc-
tions at the same time. A determination is commenced, how-
ever, by passing each instructions through a pre-decode stage
prior to making it available to the instruction scheduler 4 as
candidate for scheduling for execution. This pre-decode stage
is used to pick out the resources that the instruction will
require.

For a super threading processor, a reduced set of these
resource requirements are tested. By picking a simple
example, a thread may wish to use an execution unit to send
a request for a data memory fetch to load or store some data.
If another thread wishes to use either the same execution unit
or wishes to use the data memory port for the data memory
fetch, then it will be incompatible with execution of the first
thread such that the two cannot be issued at the same time. If,
however, another thread wishes to perform a set of different
instructions such as a program branch which does not require
those resources, it will be deemed to be compatible and may
be issued for execution at the same time as a thread is used to
request a data memory fetch.

In order to make an appropriate determination, all of the
threads present have all of their stated resource requirements
tested against each other in parallel. This process is symmetri-
cal in that if a thread A is compatible with a thread B then by
definition thread B will also be compatible with thread A.
Therefore, the test only needs to be made once between each
pair of threads.

A result of this compatibility testing, a flag is generated for
each pairing of thread and the status of this flag is determines
whether or not threads are compatible. Therefore, the result of
testing each thread against all other threads is that for each
pair of threads a compatibility flag is generated the status of
which determines whether or not threads are compatible for
execution, i.e. whether or not only two threads overlapping
resource requirements at the same time.

In addition, the threads have a ranked ordering. The com-
patibility status information is used such that each rank in this
order, a final compatibility set is prepared by considering each
of the lower ranks in turn. If a rank is compatible where the
highest priority thread it is added to the set for execution,
otherwise it is skipped and the next thread considered. A final
step to actual scheduling of instructions is that the determi-
nation is then made of the highest ranking thread which is able
to be issued, i.e. it is not waiting on a resource or register to
become available. This thread along with its super threading
set (other threads which may execute with it is then issued
together.

In order to maximize the ability of the threads to issue
instructions at the same time, it is important that as far as
possible all threads should have instructions available to be
issued. Therefore the priority arbiter is configured to give
preference, when appropriate, to fetching instructions for
threads that have nothing in their thread instruction butfers or
are running out of thread instructions in their thread instruc-
tion buffers. These threads then take precedence over other
threads when fetching instructions, including threads which
have a higher overall priority ranking.

A preferred embodiment of the threaded instruction fetch
unit is shown in FIG. 3. Each thread is provided with such an
instruction fetch unit. This particular example is shown with

10

15

20

25

30

35

40

45

50

55

60

65

6

reference to obtaining instructions from the instruction cache,
it could equally be used with the on chip RAM such as that
shown in FIG. 2.

The instruction fetch unit comprises an instruction address
feed unit 32, which sends requests for instructions to the
instruction cache. There will be some latency between the
issuing of instructions from the instruction address feed unit
32 due to the time to look up instructions in the instruction
cache, it is preferable for the instruction fetch engine to be
configured to request instructions with sufficient frequency to
reduce or eliminate the latency altogether from the stream of
issuing instructions.

In non-multithreaded microprocessors, the instruction
fetch pipeline could be stalled if the consumption of instruc-
tions was less than the maximum rate of request. However, in
multithreaded systems where the instruction cache is shared
between the threads such stalling is not usually possible
because it would introduce a dependency between threads
such that a thread that has requested a number of instructions
but not used them might then stall all the other threads in the
system. Therefore, each thread instruction fetch unit incor-
porates an instruction buffer able to hold the returning data for
a fixed number of instruction requests. As many instruction
requests may be in transit as there are slots in the instruction
buffer may be stored. The instruction buffer 34 is shown in
FIG. 3. After the instruction buffer instructions pass via an
instruction data feed unit 36 to the instruction scheduler.

In a preferred embodiment of the invention, data is
extracted from the thread instruction fetch unit relating to the
fullness of the instruction bufter 38. This may be a data value
indicating the number of available slots in the instruction
buffer or a data value indicating how many slots have been
already occupied. This data is provided to a priority arbiter 24
of'the type shown in FIG. 2 and is used by the priority arbiter
to prioritise instruction fetches for threads which are running
short of instructions in comparison with other threads. This
then ensures that the instruction buffer for that thread has
further instructions provided to it as early as possible so that
a larger number of instruction are available to the instruction
scheduler.

Therefore, the instruction fetch unit of FIG. 3 can be used
for each of a number of threads and will provide data that
indicates which thread has the instruction buffer with the
most instructions in it and which has the least. These are
compared by the priority arbiter produce a prioritised list. The
thread which has fewest instructions in its instruction buffer
can then be prioritised for the next instruction fetch on the
next clock cycle (providing it is requesting an instruction). At
the same time, at least one of the threads will issue an instruc-
tion to the instruction scheduler and this may in turn change
the priority on the next clock cycle. Thus the thread with the
highest priority which is also requesting an instruction from a
source of instructions will fetch an instruction.

As discussed above, this system prioritises threads by sort-
ing them into an order based upon the fullness of the instruc-
tion buffer 34 in each instruction fetch unit. Preferred
embodiments of the invention modify this by adding an addi-
tional level of arbitration.

A priority arbiter of the type shown in FIG. 2 is illustrated
in more detail in FIG. 4. The priority arbiter 24 receives
instruction requests and grants instructions from its associ-
ated on chip RAM or instruction cache to each of the instruc-
tion fetch engines for the respective threads provided in the
multithreaded processor. An input to the priority arbiter is the
prioritised order determined for the instruction fetch engines
for each thread as determined by the fullness of their respec-
tive instruction buffers. This may be derived in a separate unit.

US 9,348,600 B2

7

Alternatively, the relevant data values may be provided to the
priority arbiter itself which may then compute the necessary
priority order.

Because each instruction fetch unit may only fetch enough
instructions to fill its instruction butfer, any thread with a full
instruction buffer will hot request a new fetch on each cycle.
Therefore, the priority arbiter will determine the highest pri-
ority thread which is requesting a new instruction via its
request signal.

The priority order determined by the priority arbiter 24 or
received from a separate unit, is combined with the additional
measures for priority discussed above which we refer to at the
automatic million-instructions-per-second allocation (AMA)
metric. This may be a combination of e.g. deadline count,
delay count and possibly other factors effecting the execution
of'a thread. Effectively, it is an execution based metric which
can be combined with the priority metric determined from the
fullness of the instruction buffers.

The AMA metric is simplified into a simple ordering of the
threads, i.e. it is a sorted list of threads. This is in contrast to
the fullness of the instruction buffer for each thread which has
alist of data regarding buffer capacity. Using these two pieces
of information to determine a priority order is then imple-
mented by the priority arbiter 24.

The buffer capacity is extremely important and a list is
formed and sorted into order of fullest to emptiest of instruc-
tion buffers for threads. The emptiest is the higher priority. If
all of the threads have a different buffer fullness then, in a
preferred embodiment of the invention, this is the end of the
process. The AMA metric is used only to determine the cor-
rect order of threads which have the same buffer fullness.

For example, if we have four threads each of which has an
empty instruction buffer then each will have an equal need for
an instruction to be fetched. Therefore, the arbiter must then
consider the AMA metrics of each thread. These will be
ranked 3, 2, 1, and 0. If 3 is the higher priority metric and O is
the lowest, the thread which has an AMA of 3 will have the
highest priority for the next instruction fetch.

In another example, if threads 0, 1, 2, and 3 have a need for
instructions which are given priorities 1, 2, 2, O respectively
and the AMA metric’s for each thread are 3, 2, 1, and 0
respectively, then the final priority order will be 1, 3, 2, and 0.
This is because threads 1 and 2 have the highest need for
instructions and of these two threads, thread 1 has an AMA
priority of 3, and thread 2 has an AMA priority of 2.

Where all threads have different needs, this will determine
the order in which instructions are fetched and the AMA
metric will not affect the order in which instructions are
fetched. The priority arbiter is implemented preferably in
hardware at present since this enables faster determination of
priorities. However, as software becomes faster it may be
possible to implement it in software and indeed in some
applications at present a software embodiment may give
acceptable performance. In operation, each of the threads are
checked internally each clock cycle to determine whether or
not they are requesting an instruction from any particular
memory. Ifthe highest priority thread is requesting an instruc-
tion and is not blocked in some way then the request is issued.
This will alter the need metric which will employed on future
cycles. If the highest priority thread is not making a request
then all other priorities will be considered in turn to see if they
can be used. If no thread can request an instruction then no
request is made on that cycle.

Once an instruction has been fetched, it is supplied directly
from the on chip RAM or the instruction cache to the thread
instruction fetch unit. The order in which instructions reach

25

40

45

8

the instruction fetch units may vary in dependence on the
source of instructions being fetched and their location within
each source.

It will be appreciated that using the system of FIG. 2 where
instructions can be fetched from an instruction cache or from
dedicated instruction memory, the instruction cache and the
instruction memory may respectively be accessed by differ-
ent threads at the same time. This necessitates two priority
arbiters. The priority order list for the arbiters may be shared
between the two devices.

Therefore, preferred embodiments provide an arbiter for
each source of instructions which is coupled to each of the
instruction fetch units for executing threads. These receive
instruction fetch requests from each thread which requires an
Instruction at various times and arbiter between request to
determine which thread should receive an instruction from
that source. Each thread can only issue one instruction fetch
per clock cycle. Preferably, a thread will not request an
instruction from a different source while it still has requests
outstanding from a first source.

The invention claimed is:

1. A method for prioritizing fetching of instructions from at
least one source of instructions in a multithreaded processor
system, comprising:

receiving from a plurality of threads executing on said
multithreaded processor system requests to fetch
instructions from a source of instructions;

determining a first metric for each thread based on the
number of instructions that are currently buffered for
that thread;

determining a second metric for each thread respectively
based on at least one execution parameter for that thread;

determining a ranked priority order for said plurality of
threads by combining the first metrics and the second
metrics for each thread; and

fetching an instruction from the source for the thread with
the highest priority in the ranked priority order.

2. The method according to claim 1, wherein a higher
priority is given to a thread with a smaller number of buffered
instructions.

3. The method according to claim 1, further comprising
receiving requests to fetch instructions from at least two of the
plurality of threads in a single clock cycle.

4. The method according to claim 1, wherein the at least
one source of instructions comprises an instruction cache and
further comprising sending requests for instructions to the
instruction cache from an instruction fetch unit.

5. The method according to claim 1, further comprising
directly providing the instruction from the source to an
instruction fetch unit for the thread to which the fetched
instruction pertains.

6. The method according to claim 1, wherein more than one
thread may issue instructions for execution on each clock
cycle.

7. The method according to claim 6, further comprising
using an execution ranked order to determine which thread
with instructions in its buffer should execute on each clock
cycle.

8. A system for prioritizing the fetching of instructions for
each of a plurality of executing threads of instructions in a
multithreaded processor system comprising:

a source of instructions;

a plurality of instruction fetch units each associated with a
respective one of each of said plurality of executing
threads, each instruction fetch unit configured to issue a
request to fetch an instruction from said source of
instructions, for its associated thread; and

US 9,348,600 B2

9

a priority arbiter operatively coupled between said source
of instructions and said plurality of instruction fetch
units, said priority arbiter being configured to determine
a priority among multiple simultaneously received
requests from said instruction fetch units, by

combining a first metric for each thread with a second
metric for each thread, said first metric being based on
the number of instructions that are currently buffered for
that thread, and said second metric being based on at
least one execution parameter for that thread, and

determining a ranked priority order of said plurality of
threads based on a result of said combination of metrics;

wherein said priority arbiter fetches an instruction from the
source for the thread with the highest priority in the
ranked priority order.

9. The system according to claim 8, wherein said combi-
nation gives a higher priority to a thread with a smaller num-
ber of buffered instructions.

10. The system according to claim 8, wherein multiple
threads may request instructions from the source of instruc-
tions on a single cycle of a clock.

11. The system according to claim 8, further comprising a
second source of instructions from which threads may request
an instruction to be fetched.

12. The system according to claim 11, wherein a thread
which has requested an instruction from a first source of
instructions may not request an instruction from a second
source of instructions until the first request has been com-
pleted.

13. The system according to claim 8, wherein instructions
for more than one thread are capable of being executed within
execution resources of the system on each cycle of a clock.

10

15

20

25

10

14. The system according to claim 13, wherein the system
is configured to assign to threads an execution rank order to
determine which thread or threads with buffered instructions
should execute on each clock cycle.

15. The system according to claim 8, wherein the at least
one execution parameter pertains to at least one of a deadline
by which execution of a set of instructions comprised by a
thread is to be completed and an amount of delay since execu-
tion of that thread was requested.

16. The system according to claim 15, wherein a thread
which has requested an instruction from a first source of
instructions may not request an instruction from a second
source of instructions until the first request has been com-
pleted.

17. The system according to claim 8, further comprising an
instruction scheduler configured to issue instructions for
execution according to an execution ranked priority ordering
of the threads on each clock cycle.

18. The system according to claim 17, wherein the instruc-
tion scheduler is further configured to issue one or more
instructions that were determined to be compatible with the
instruction to be issued for the thread with the highest priority
in the execution ranked priority ordering.

19. The method according to claim 1, wherein the at least
one execution parameter pertains to at least one of a deadline
by which execution of a set of instructions comprised by a
thread is to be completed and an amount of delay since execu-
tion of that thread was requested.

#* #* #* #* #*

